Analysis of critical current inhomogeneity in r–z plane of GdBCO superconducting bulk and simulation of flux jumps during pulsed field magnetization

Author:

Hu J T,Yang W JORCID,Zhou D FORCID,Zhao PORCID,Li X DORCID,Deng F W,Yan J Z

Abstract

Abstract In pulsed field magnetization (PFM), the phenomenon of flux jump is capable of driving magnetic flux vortexes into the GdBCO superconducting bulk center to aid full magnetization. Various homogeneous critical current density (J c) models have been implemented to reproduce flux jumps, but the simulated multi-physical responses differ from experimental observations. This paper proposes a modified J c model to consider rz plane J c inhomogeneity, and simulates flux jumps under experimental conditions by solving a 2D axisymmetric electromagnetic-thermal coupled model. A numerical treatment is developed to reflect the breaking of shielding current during flux jumps. The accuracy of our model is verified by comparisons of the calculated results for trapped magnetic fields (B T) and the PFM and field-cooling experimental results. On this basis, we investigate the improvement of the inhomogeneous J c model and obtain multi-physical responses that show better agreement with the experimental results compared to the homogeneous J c model. Moreover, to further test the ability of the inhomogeneous J c model to predict the anisotropy of the spatial magnetic field distribution, the simulated B T profiles at the top and bottom surfaces of the high-temperature superconductor (HTS) bulk at 77 K are compared to the experiments. This study may provide a new approach for modeling the inhomogeneity of J c characteristics and a useful analysis tool for industrial devices using HTS bulk magnets.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3