Composite stacks for reliable > 17 T trapped fields in bulk superconductor magnets

Author:

Huang Kai YuanORCID,Shi YunhuaORCID,Srpčič JanORCID,Ainslie Mark DORCID,Namburi Devendra KORCID,Dennis Anthony R,Zhou DifanORCID,Boll MartinORCID,Filipenko MykhayloORCID,Jaroszynski JanORCID,Hellstrom Eric EORCID,Cardwell David AORCID,Durrell John HORCID

Abstract

Abstract Trapped fields of over 20 T are, in principle, achievable in bulk, single-grain high temperature cuprate superconductors. The principle barriers to realizing such performance are, firstly, the large tensile stresses that develop during the magnetization of such trapped-field magnets as a result of the Lorentz force, which lead to brittle fracture of these ceramic-like materials at high fields and, secondly, catastrophic thermal instabilities as a result of flux movement during magnetization. Moreover, for a batch of samples nominally fabricated identically, the statistical nature of the failure mechanism means the best performance (i.e. trapped fields of over 17 T) cannot be attained reliably. The magnetization process, particularly to higher fields, also often damages the samples such that they cannot repeatedly trap high fields following subsequent magnetization. In this study, we report the sequential trapping of magnetic fields of ∼ 17 T, achieving 16.8 T at 26 K initially and 17.6 T at 22.5 K subsequently, in a stack of two Ag-doped GdBa2Cu3O7-δ bulk superconductor composites of diameter 24 mm reinforced with (1) stainless-steel laminations, and (2) shrink-fit stainless steel rings. A trapped field of 17.6 T is, in fact, comparable with the highest trapped fields reported to date for bulk superconducting magnets of any mechanical and chemical composition, and this was achieved using the first composite stack to be fabricated by this technique. These post-melt-processing treatments, which are relatively straightforward to implement, were used to improve both the mechanical properties and the thermal stability of the resultant composite structure, providing what we believe is a promising route to achieving reliably fields of over 20 T.

Funder

Siemens AG Corporate Technology eAircraft

Engineering and Physical Sciences Research Council

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3