Comparison of the Field Trapping Ability of MgB2 and Hybrid Disc-Shaped Layouts

Author:

Fracasso Michela12ORCID,Gerbaldo Roberto12ORCID,Ghigo Gianluca12ORCID,Torsello Daniele12ORCID,Xing Yiteng3ORCID,Bernstein Pierre3ORCID,Noudem Jacques3ORCID,Gozzelino Laura12ORCID

Affiliation:

1. Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy

2. Istituto Nazionale di Fisica Nucleare, Sezione di Torino, 10125 Torino, Italy

3. UMR 6508, CRISMAT, ENSICAEN, CNRS, UNICAEN, 14050 Caen, France

Abstract

Superconductors have revolutionized magnet technology, surpassing the limitations of traditional coils and permanent magnets. This work experimentally investigates the field-trapping ability of a MgB2 disc at various temperatures and proposes new hybrid (MgB2-soft iron) configurations using a numerical approach based on the vector potential (A→) formulation. The experimental characterization consists in measurements of trapped magnetic flux density carried out using cryogenic Hall probes located at different radial positions over the MgB2 sample, after a field cooling (FC) process and the subsequent removal of the applied field. Measurements were performed also as a function of the distance from the disc surface. The numerical modelling of the superconductor required the evaluation of the critical current density dependence on the magnetic flux density (Jc(B)) obtained through an iterative procedure whose output were successfully validated by the comparison between experimental and computed data. The numerical model, upgraded to also describe the in-field behavior of ARMCO soft iron, was then employed to predict the field-trapping ability of hybrid layouts of different shapes. The most promising results were achieved by assuming a hollow superconducting disc filled with a ferromagnetic (FM) cylinder. With such a geometry, optimizing the radius of the FM cylinder while the external dimensions of the superconducting disc are kept unchanged, an improvement of more than 30% is predicted with respect to the full superconducting disc, assuming a working temperature of 20 K.

Funder

COST

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3