Behaviour prediction of closed-loop HTS coils in non-uniform AC fields

Author:

Zhong ZhuoyanORCID,Wu WeiORCID,Wang XueliangORCID,Li Xiao-FenORCID,Sheng JieORCID,Hong Zhiyong,Jin Zhijian

Abstract

Abstract Field decay rate is the key characteristic of superconducting magnets based on closed-loop coils. However, in Maglev trains or rotating machines, closed-loop magnets work in external AC fields and will exhibit an evidently accelerated field decay resulting from dynamic resistances, which are usually much larger than joint resistance. Nevertheless, there has not been a numerical model capable of systematically studying this behaviour, which is the main topic of this work. The field decay curves of a closed-loop high-temperature-superconducting (HTS) coil in various AC fields are simulated based on H-formulation. A non-uniform external field generated by armature coils is considered. Reasonable consistence is found between experimental and simulation results. In our numerical model, the impact of current relaxation, which is a historical challenge, is analysed and subsequently eliminated with acceptable precision. Our simulation results suggest that most proportion of the field decay rate is from the innermost and outermost turns. Based on this observation, a magnetic shielding pattern is designed to reduce the field decay rate efficiently. This work has provided magnet designers with an effective method to predict the field decay rate of closed-loop HTS coils in external AC fields, and explore various shielding designs.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3