4.6 T generated by a high-temperature superconducting ring magnet

Author:

Ali Muhammad ZulfiqarORCID,Zheng Jinxing,Huber Felix,Zhang Zhiwei,Yuan Weijia,Zhang MinORCID

Abstract

Abstract We report here a record 4.6 T trapped field generated by high temperature superconducting (HTS) persistent current loops using a HTS ring structure. By stacking 200 HTS rings into a compact magnet 90 mm in diameter, we performed a field cooling magnetisation at 25 K. The main advantage of the new magnet compared to existing trapped field HTS magnets is that the magnetic field is in the parallel direction to the ab plane of the HTS, leading to higher critical currents in the same magnetic field. Therefore, compact HTS magnets can be developed based on this principle to achieve high magnetic fields. Experimental results show that the final trapped field distribution depends on the ring geometry. We developed a new three dimensional model to simulate the magnetic field distribution within the HTS ring magnet and good agreement between experiments and simulation have been found. The temperature dependency and ramping rate dependency have been studied numerically as potential factors to influence the magnet field. The proposed HTS ring magnet will have promising applications in medical imaging devices, e.g. MRI, as well as electrical machines.

Funder

Henry Royce Institute

Royal Society Research Grant

National Key Research and Development Program of China

Publisher

IOP Publishing

Subject

Materials Chemistry,Electrical and Electronic Engineering,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3