Thermal acclimation of plant photosynthesis and autotrophic respiration in a northern peatland

Author:

Ma ShuangORCID,Jiang LifenORCID,Wilson Rachel MORCID,Chanton Jeff,Niu Shuli,Iversen Colleen M,Malhotra AvniORCID,Jiang Jiang,Huang YuanyuanORCID,Lu Xingjie,Shi Zheng,Tao FengORCID,Liang JunyiORCID,Ricciuto Daniel,Hanson Paul JORCID,Luo YiqiORCID

Abstract

Abstract Peatlands contain one-third of global soil carbon (C), but the responses of peatland ecosystems to long-term warming are not well understood. Here, we pursue an emergent understanding of warming effects on ecosystem C fluxes at peatlands by constraining a process-oriented model, the terrestrial ECOsystem model, with observational data from a long-term warming experiment at the Spruce and Peatland Responses Under Changing Environments site. Model-based assessments show that ecosystem-level photosynthesis and autotrophic respiration exhibited significant thermal acclimation, with temperature sensitivities being linearly decreased with warming. Using the thermal-acclimated parameter values, simulated gross primary production, net primary production, and plant autotrophic respiration (R a), were all lower than those simulated with non-thermal acclimated parameter values. In contrast, ecosystem respiration simulated with thermal acclimated parameter values was higher than that simulated with non-thermal acclimated parameter values. Net ecosystem CO2 exchange was much higher after constraining model parameters with observational data from the warming treatments, releasing C at a rate of 28.3 g C m−2 yr−1 °C−1. Our data-model integration study suggests that peatlands are likely to release more C than previously estimated. Earth system models may overestimate C uptake by peatlands under warming if physiological thermal acclimation of plants is not incorporated. Thus, it is critical to consider the long-term physiological thermal acclimation of plants in the models to better predict global C dynamics under future climate and their feedback to climate change.

Funder

Oak Ridge National Laboratory

Publisher

IOP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3