Resolving the Carbon‐Climate Feedback Potential of Wetland CO2 and CH4 Fluxes in Alaska

Author:

Ma Shuang12ORCID,Bloom A. Anthony1ORCID,Watts Jennifer D.3ORCID,Quetin Gregory R.4ORCID,Donatella Zona5ORCID,Euskirchen Eugénie S.6ORCID,Norton Alexander J.7,Yin Yi8,Levine Paul A.1ORCID,Braghiere Renato K.18ORCID,Parazoo Nicholas C.1ORCID,Worden John R.1ORCID,Schimel David S.1ORCID,Miller Charles E.1ORCID

Affiliation:

1. Jet Propulsion Laboratory California Institute of Technology Pasadena CA USA

2. Joint Institute for Regional Earth System Science and Engineering University of California Los Angeles CA USA

3. Woodwell Climate Research Center Falmouth MA USA

4. Department of Geography University of California Santa Barbara CA USA

5. Department of Biology San Diego State University San Diego CA USA

6. Institute of Arctic Biology University of Alaska Fairbanks Fairbanks AK USA

7. Research School of Biology Australian National University Canberra ACT Australia

8. Division of Geological and Planetary Sciences California Institute of Technology Pasadena CA USA

Abstract

AbstractBoreal‐Arctic regions are key stores of organic carbon (C) and play a major role in the greenhouse gas balance of high‐latitude ecosystems. The carbon‐climate (C‐climate) feedback potential of northern high‐latitude ecosystems remains poorly understood due to uncertainty in temperature and precipitation controls on carbon dioxide (CO2) uptake and the decomposition of soil C into CO2 and methane (CH4) fluxes. While CH4 fluxes account for a smaller component of the C balance, the climatic impact of CH4 outweighs CO2 (28–34 times larger global warming potential on a 100‐year scale), highlighting the need to jointly resolve the climatic sensitivities of both CO2 and CH4. Here, we jointly constrain a terrestrial biosphere model with in situ CO2 and CH4 flux observations at seven eddy covariance sites using a data‐model integration approach to resolve the integrated environmental controls on land‐atmosphere CO2 and CH4 exchanges in Alaska. Based on the combined CO2 and CH4 flux responses to climate variables, we find that 1970‐present climate trends will induce positive C‐climate feedback at all tundra sites, and negative C‐climate feedback at the boreal and shrub fen sites. The positive C‐climate feedback at the tundra sites is predominantly driven by increased CH4 emissions while the negative C‐climate feedback at the boreal site is predominantly driven by increased CO2 uptake (80% from decreased heterotrophic respiration, and 20% from increased photosynthesis). Our study demonstrates the need for joint observational constraints on CO2 and CH4 biogeochemical processes—and their associated climatic sensitivities—for resolving the sign and magnitude of high‐latitude ecosystem C‐climate feedback in the coming decades.

Funder

Earth Sciences Division

Gordon and Betty Moore Foundation

Division of Environmental Biology

U.S. Geological Survey

Publisher

American Geophysical Union (AGU)

Subject

Atmospheric Science,General Environmental Science,Environmental Chemistry,Global and Planetary Change

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3