Future challenges of representing land-processes in studies on land-atmosphere interactions
-
Published:2012-09-07
Issue:9
Volume:9
Page:3587-3599
-
ISSN:1726-4189
-
Container-title:Biogeosciences
-
language:en
-
Short-container-title:Biogeosciences
Author:
Arneth A.,Mercado L.,Kattge J.,Booth B. B. B.
Abstract
Abstract. Over recent years, it has become increasingly apparent that climate change and air pollution need to be considered jointly for improved attribution and projections of human-caused changes in the Earth system. Exchange processes at the land surface come into play in this context, because many compounds that either act as greenhouse gases, as pollutant precursors, or both, have not only anthropogenic but also terrestrial sources and sinks. And since the fluxes of multiple gases and particulate matter between the terrestrial biota and the atmosphere are directly or indirectly coupled to vegetation and soil carbon, nutrient and water balances, quantification of their geographic patterns or changes over time requires due consideration of the underlying biological processes. In this review we highlight a number of critical aspects and recent progress in this respect, identifying in particular a number of areas where studies have shown that accounting for ecological process understanding can alter global model projections of land-atmosphere interactions substantially. Specifically, this concerns the improved quantification of uncertainties and dynamic system responses, including acclimation, and the incorporation of exchange processes that so far have been missing from global models even though they are proposed to be of relevance for our understanding of terrestrial biota-climate feedbacks. Progress has also been made regarding studies on the impacts of land use/land cover change on climate change, but the absence of a mechanistically based representation of human response-processes in ecosystem models that are coupled to climate models limits our ability to analyse how climate change or air pollution in turn might affect human land use. A more integrated perspective is necessary and should become an active area of research that bridges the socio-economic and biophysical communities.
Funder
European Commission
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics
Reference102 articles.
1. Andreae, M. O., Jones, C. D., and Cox, P. M.: Strong present-day aerosol cooling implies a hot future, Nature, 435, 1187–1191, https://doi.org/10.1038/nature03671, 2005. 2. Arneth, A., Veenendaal, E. M., Best, C., Timmermans, W., Kolle, O., Montagnani, L., and Shibistova, O.: Water use strategies and ecosystem-atmosphere exchange of CO2 in two highly seasonal environments, Biogeosciences, 3, 421–437, https://doi.org/10.5194/bg-3-421-2006, 2006. 3. Arneth, A., Miller, P. A., Scholze, M., Hickler, T., Schurgers, G., Smith, B., and Prentice, I. C.: CO2 inhibition of global terrestrial isoprene emissions: Potential implications for atmospheric chemistry, Geophys. Res. Lett., 34, L18813, https://doi.org/10.11029/12007GL030615, 2007. 4. Arneth, A., Schurgers, G., Hickler, T., and Miller, P. A.: Effects of species composition, land surface cover, CO2 concentration and climate on isoprene emissions from European forests, Plant Biol., 10, 150–162, https://doi.org/10.1055/s-2007-965247, 2008. 5. Arneth, A., Harrison, S. P., Zaehle, S., Tsigaridis, K., Menon, S., Bartlein, P. J., Feichter, J., Korhola, A., Kulmala, M., O'Donnell, D., Schurgers, G., Sorvari, S., and Vesala, T.: Terrestrial biogeochemical feedbacks in the climate system, Nat. Geosci, 3, 525–532, https://doi.org/10.1038/ngeo1905, 2010a.
Cited by
61 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|