Abstract
Abstract
Plasma-induced defects are often recognized in state-of-the-art semiconductors, high-efficiency solar cells and high-sensitivity image sensors. These defects are in the form of a dangling bond, bond deformation, or impurity/residual, which impacts on the device performance and reliability. The defects are introduced via plasma-material interactions during manufacturing processes such as deposition, etching and implantation. So, the management of defects throughout the manufacturing is important for high-performance device fabrication. In this review, we overview the generation and recovery of plasma-induced defects in order to develop the defect-managed advanced plasma processing for further improving the device performances. The defect generation and recovery are described, based on the recent results of in-situ and real-time detection of plasma-induced defects. Two examples are presented: the growth of hydrogenated amorphous silicon and the surface passivation of crystalline silicon for high-efficiency solar cell applications.
Funder
Japan Society for the Promotion of Science
New Energy and Industrial Technology Development Organization
Subject
Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献