Abstract
Abstract
Metal–ferroelectric–insulator–semiconductor (MFIS) capacitors were characterized to elucidate the optimum design schemes for the ferroelectric field-effect transistor applications. The Hf1−x
Zr
x
O2 (HZO) thin films (18 nm) were prepared on the SiO2 and ZrO2 insulator layers (ILs) with different film thicknesses. The choice of 10 nm thick ZrO2 IL was found to be an optimum condition to properly balance between the values of electric fields applied to the HZO (E
HZO) and ZrO2 (E
IL) layers, leading to effective improvement in capacitance coupling ratio and to suppression of charge injection for the MFIS capacitors. Furthermore, the crystalline natures of the crystallized HZO films were also found to be strategically controlled on the ZrO2 ILs, which can additionally enhance the E
HZO with reducing the E
IL. As consequences, the MFIS capacitors using 10 nm thick ZrO2 IL exhibited the ferroelectric memory window as large as 2.5 V at an application of ±5 V, which corresponds to 2.7 times wider value, compared to that obtained from the device using 2 nm thick SiO2 IL. Long-time memory retention and robust program endurance were also verified for the fabricated MFIS capacitors.
Funder
Electronics and Telecommunications Research Institute
Subject
Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献