Analysis of size dependence and the behavior under ultrahigh current density injection condition of GaN-based Micro-LEDs with pixel size down to 3 μm

Author:

Liu YiboORCID,Feng FengORCID,Zhang Ke,Jiang Fulong,Chan Ka-Wah,Kwok Hoi-Sing,Liu ZhaojunORCID

Abstract

Abstract In this paper, the GaN-based green micro light-emitting diodes (Micro-LEDs) with various sizes (from 3 to 100 μm) were fabricated and electro-optically characterized. Atom layer deposition (ALD) passivation and potassium hydroxide (KOH) treatment were applied to eliminate the sidewall damage. The size dependence of Micro-LED was systematically analyzed with current-versus-voltage and current density-versus-voltage relationship. According to the favorable ideality factor results (<1.5), the optimized sidewall treatment was achieved when the device size shrank down to <10 μm. In addition, the external quantum efficiency (EQE) droop phenomenon, luminance and output power density characteristics were depicted up to the highest current density injection condition to date (120 kA cm−2), and 6 μm device exhibited an improved EQE performance with the peak EQE value of 16.59% at 20 A cm−2 and over 600k and 6M cd cm−2 at 1 and 10 A cm−2, indicating a greater brightness quality for over 3000 PPI multiple display application. Lastly, the blue shift of 6 μm device with elevating current density was observed in electroluminescence spectra and converted to CIE 1931 color space. The whole shifting track and color variation from 1 A cm−2 to 120 kA cm−2 were demonstrated by color coordinates.

Funder

Shenzhen Science and Technology Program

Fundamental and Applied Fundamental Research Fund of Guangdong Province

High-level University Fund

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3