Abstract
Abstract
Novel spin field effect transistors (FETs) with metal contacts are designed to reduce the high Schottky barrier height (SBH) due to Fermi pinning, reducing energy consumption and increasing their performance. Herein, we effectively enhance the conductivity (106 orders of magnitude) and current threshold of the FETs by introducing interlayer graphene in the contact interface between the semiconductor blue phosphorus and the metal, thereby reducing the interlayer resistance. Electronic structure analysis shows that Blue Phosphorus–Graphene–Cu modulates the lowest SBH, yielding a larger FETs conductance compared to other metal systems. The spin injection further enhances the efficiency of FETs as rectifiers (enhanced 13%). This theoretical work provides rational guidance for realizing innovations in next-generation high-performance transistor technology, demonstrating the inherent potential of the regulatory mechanism.
Funder
High Performance Computing Center of Wuhan University of Science and Technology
Metallurgical Process of Wuhan University of Science and Technology
Education Department of Hubei Province
National Natural Science Foundation of China
Hubei Province Key Laboratory of Systems Science