Oxygen vacancy engineering of TaO x -based resistive memories by Zr doping for improved variability and synaptic behavior

Author:

Palhares João H QuintinoORCID,Beilliard YannORCID,Alibart Fabien,Bonturim EvertonORCID,de Florio Daniel ZORCID,Fonseca Fabio CORCID,Drouin Dominique,Ferlauto Andre SORCID

Abstract

Abstract Resistive switching (RS) devices are promising forms of non-volatile memory. However, one of the biggest challenges for RS memory applications is the device-to-device (D2D) variability, which is related to the intrinsic stochastic formation and configuration of oxygen vacancy (VO) conductive filaments (CFs). In order to reduce the D2D variability, control over the formation and configuration of oxygen vacancies is paramount. In this study, we report on the Zr doping of TaO x -based RS devices prepared by pulsed-laser deposition as an efficient means of reducing the VO formation energy and increasing the confinement of CFs, thus reducing D2D variability. Our findings were supported by XPS, spectroscopic ellipsometry and electronic transport analysis. Zr-doped films showed increased VO concentration and more localized VOs, due to the interaction with Zr. DC and pulse mode electrical characterization showed that the D2D variability was decreased by a factor of seven, the resistance window was doubled, and a more gradual and monotonic long-term potentiation/depression in pulse switching was achieved in forming-free Zr:TaO x devices, thus displaying promising performance for artificial synapse applications.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

CNPq - INCT Carbon Nanomaterials

FAPESP

Natural Sciences and Engineering Research Council of Canada

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3