Abstract
Abstract
In this work, staggered bottom-gate structure amorphous In–Ga–Zn–O (a-IGZO) thin film transistors (TFTs) with high-k ZrO2 gate dielectric were fabricated using low-cost atmospheric pressure-plasma enhanced chemical vapor deposition (AP-PECVD) with in situ hydrogenation to modulate the carrier concentration and improve interface quality. Subsequently, a neutral oxygen beam irradiation (NOBI) technique is applied, demonstrating that a suitable NOBI treatment could successfully enhance electrical characteristics by reducing native defect states and minimize the trap density in the back channel. A reverse retrograde channel (RRGC) with ultra-high/low carrier concentration is also formed to prevent undesired off-state leakage current and achieve a very low subthreshold swing. The resulting a-IGZO TFTs exhibit excellent electrical characteristics, including a low subthreshold swing of 72 mV dec−1 and high field-effect mobility of 35 cm2 V−1 s−1, due to conduction path passivation and stronger carrier confinement in the RRGC. The UV–vis spectroscopy shows optical transmittance above 90% in the visible range of the electromagnetic spectrum. The study confirms the H2 plasma with NOBI-treated a-IGZO/ZrO2 TFT is a promising candidate for transparent electronic device applications.
Funder
The Featured Areas Research Center Program
Ministry of Science and Technology, Taiwan
Ministry of Education in Taiwan
Higher Education Sprout Project
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献