Improving the electrical properties of transparent ZnO-based thin- film transistors using MgO gate dielectric with various oxygen concentrations

Author:

Hwang Jun-DarORCID,Hsu Zhu-Rong

Abstract

Abstract Zinc oxide (ZnO)-based thin-film transistors (TFTs) have attracted increasing attention towards flat-panel displays as alternatives to silicon-based TFTs due to their transparency to visible light. Magnesium oxide (MgO) has a wide bandgap (7.8 eV) and high dielectric constant (k). This leads to the development of TFTs using MgO as a gate oxide layer, which can significantly reduce the operating voltage. However, the electrical properties and dielectric constant of MgO are determined from the percentage of oxygen in MgO. In this study, a MgO gate-oxide was deposited on ZnO by magnetron sputtering at various oxygen concentrations (0%, 66%, and 100%) to fabricate TFTs. With an increase in the oxygen concentration, the oxygen vacancies of MgO were compensated, thereby improving the crystallinity and enhancing the dielectric constant from 6.53 to 12.9 for the oxygen concentrations of 0% and 100%. No pinch-off (saturation) behavior was observed in the TFTs with 0% oxygen; however, the pinch-off voltages were significantly reduced to 17 and 2 V in the TFTs with 66% and 100% oxygen, respectively; hence, the TFT-100 could be operated at a low operating voltage (2 V). With an increase in oxygen from 0% to 100%, the threshold voltage and trap-state density significantly decreased from −159 V and 1.6 × 1018 cm−3 to −31.4 V and 6.5 × 1016 cm−3, respectively. The TFTs with 0% oxygen exhibited a higher field-effect mobility of 12 cm2 V−1 s−1 due to the uncompensated oxygen vacancy in ZnO, which had a higher electron concentration. After introducing oxygen atoms, the field-effect mobility decreased to 0.16 cm2 V−1 s−1 in the TFTs with 66% oxygen, which can be attributed to the compensated oxygen vacancy and lower electron concentration. In contrast, the field-effect mobility increased to 1.88 cm2 V−1 s−1 for the TFTs with 100% oxygen due to the enhanced dielectric constant and crystallinity of MgO.

Funder

Ministry of Science and Technology

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3