Single GaAs nanowire based photodetector fabricated by dielectrophoresis

Author:

García Núñez CarlosORCID,Braña Alejandro FORCID,López NairORCID,Pau José LORCID,García Basilio JORCID

Abstract

Abstract Mechanical manipulation of nanowires (NWs) for their integration in electronics is still problematic because of their reduced dimensions, risking to produce mechanical damage to the NW structure and electronic properties during the assembly process. In this regard, contactless NW manipulation based methods using non-uniform electric fields, like dielectrophoresis (DEP) are usually much softer than mechanical methods, offering a less destructive alternative for integrating nanostructures in electronic devices. Here, we report a feasible and reproducible dielectrophoretic method to assemble single GaAs NWs (with radius 35–50 nm, and lengths 3–5 μm) on conductive electrodes layout with assembly yields above 90% per site, and alignment yields of 95%. The electrical characteristics of the dielectrophoretic contact formed between a GaAs NW and conductive electrodes have been measured, observing Schottky barrier like contacts. Our results also show the fast fabrication of diodes with rectifying characteristics due to the formation of a low-resistance contact between the Ga catalytic droplet at the tip of the NW when using Al doped ZnO as electrode. The current-voltage characteristics of a single Ga-terminated GaAs NW measured in dark and under illumination exhibit a strong sensitivity to visible light under forward bias conditions (around two orders of magnitude), mainly produced by a change on the series resistance of the device.

Funder

Ministerio de Ciencia e Innovación

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3