Abstract
Abstract
In this study, we perform reconfigurable n- and p-channel operations of a tri-top-gate field-effect transistor (FET) made of a p+-i-n+ silicon nanowire (SiNW). In the reconfigurable FET (RFET), two polarity gates and one control gate induce virtual electrostatic doping in the SiNW channel. The polarity gates are electrically connected to each other and program the channel type, while the control gate modulates the flow of charge carriers in the SiNW channel. The SiNW RFET features simple device design, symmetrical electrical characteristics in the n- and p-channel operation modes using p+-i-n+ diode characteristics, and both operation modes exhibit high ON/OFF ratios (∼106) and high ON currents (∼1 μA μm−1). The proposed device is demonstrated experimentally using a fully CMOS-compatible top-down processes.
Funder
Korea University
Ministry of Science, ICT & Future Planning
National Research Foundation of Korea
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献