Abstract
Abstract
The patterned growth of transition metal dichalcogenides (TMDs) and their lateral heterostructures is paramount for the fabrication of application-oriented electronics and optoelectronics devices. However, the large scale patterned growth of TMDs remains challenging. Here, we demonstrate the synthesis of patterned polycrystalline 2D MoS2 thin films on device ready SiO2/Si substrates, eliminating any etching and transfer steps using a combination of plasma enhanced atomic layer deposition (PEALD) and thermal sulfurization. As an inherent advantage of ALD, precise thickness control ranging from a monolayer to few-layered MoS2 has been achieved. Furthermore, uniform films with exceptional conformality over 3D structures are obtained. Finally, the approach has been leveraged to obtain in-plane lateral heterostructures of 2D MoS2 and WS2 thin films over a large area which opens up an avenue for their direct integration in future nano- and opto-electronic device applications.
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献