Hydroxyapatite nanoparticles promote mitochondrial-based pyroptosis via activating calcium homeostasis and redox imbalance in vascular smooth muscle cells

Author:

Xia Yubin,Li Bohou,Zhang Fengxia,Wu Qiong,Wen Sichun,Jiang Nan,Liu Ding,Huang Cong,Liu ShuangxinORCID

Abstract

Abstract Hydroxyapatite nanoparticles (HAP) have been widely used in various fields because of their natural biological origin and functional properties. The emerging evidence on their toxicities has attracted research interest. HAP-induced vascular smooth muscle cell (VSMC) damage is a key step in vascular calcification (VC), particularly in patients with chronic kidney disease. However, the injury effects and mechanism of action of HAP on VSMCs have not been extensively investigated. This study comprehensively characterized commercially available HAP and investigated its adverse biological effects in cultured A7R5 cells. In vitro experiments revealed that internalized HAP was localized in lysosomes, followed by the release of Ca2+ owing to the low pH microenvironment. Upon Ca2+ homeostasis, Ca2+ enters the mitochondria, leading to the simultaneous generation of reactive oxygen species (ROS). ROS subsequently attack mitochondrial transmembrane potentials, promote mitochondrial ROS production, and oxidize mitochondrial DNA (Ox-mtDNA). Mitochondrial permeability-transition pores open, followed by the release of more Ox-mtDNA from the mitochondria into the cytosol due to the redox imbalance. This activates NLRP3/caspase-1/gasdermin D-dependent pyroptosis and finally excretes inflammatory factors to induce VC; an antioxidant could rescue this process. It has been suggested that HAP could induce an imbalance in intracellular Ca2+ homeostasis in A7R5 cells, followed by the promotion of mitochondrial dysfunction and cell pyroptosis, finally enhancing VC. To detect the in vivo toxicity of HAP, mice were treated with Cy7-labelled HAP NPs for 24 h. In vivo results also demonstrated that HAP accumulated in the kidneys, accompined with increased Ca concentration, upregulated oxidative stress-related factor and kidney damage. Overall, our research elucidates the mechanism of calcium homeostasis and redox imbalance, providing insights into the prevention of HAP-induced cell death.

Funder

Medical Scientific Research Foundation of Guangdong Province of China

Guangdong Provincial Science Foundation

Guangdong Province High-level Hospital Construction Project

National Natural Science Foundation

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3