Synergistic antioxidant capacity of CsNPs and CurNPs against cytotoxicity, genotoxicity and pro-inflammatory mediators induced by hydroxyapatite nanoparticles in male rats

Author:

Mosa Israa F.1ORCID,Youssef Mokhtar2,Kamel Maher3,Mosa Osama F.4,Helmy Yasser5

Affiliation:

1. Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt. Tel: +201024680746

2. Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt

3. Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt

4. Department of Public health, Health Sciences College at Leith, Umm Al Qura University, Al-Leith, Makkah, Saudi Arabia

5. Department of BioMaterials, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt

Abstract

Abstract Due to their dynamic characteristics, hydroxyapatite nanoparticles (HAP-NPs) have been employed numerous times in nanomedicine and in tissue engineering, particularly as diagnostic and therapeutic agents. However, there are outstanding findings from various studies that question whether these NPs are safe when they are used in the human body. Therefore, a more in-depth toxicity assessment should be carried out to give a clear answer regarding the fate of these particles. Here we aim to investigate the possible cytotoxicity, genotoxicity and inflammation induced by HAP-NPs, as well as predict the synergistic antioxidative effect of chitosan nanoparticles (CsNPs) and curcumin nanoparticles (CurNPs) in mitigating this pronounced toxicity. The present study was conducted on eighty Wistar male rats, divided into eight equal groups. The results showed that, at the molecular level, HAP-NPs significantly induced gene expression of tumor suppressor protein p53, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and also Kidney Injury Molecule-1 (KIM-1) and Lipocalin-2 (LCN2). In addition, kidney biochemical parameters (total bilirubin, urea, uric acid and creatinine) increased, but albumin levels decreased in the group treated with HAP-NPs alone. Meanwhile, co-treatment with CsNPs and/or CurNPs with HAP-NPs showed an improvement in the activities of the kidney parameters and reduced inflammation. This study shows that the nephrotoxicity mechanism of HAP-NPs may involve various signaling pathways including alterations in biochemical parameters, gene expression of KIM-1 and LCN2 and disturbing the production of cytokines and p53. Furthermore, these insights showed that the combined effect of both CsNPs and CurNPs was more pronounced than the effect of each one on its own.

Publisher

Oxford University Press (OUP)

Subject

Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3