Near-zero contact force atomic force microscopy investigations using active electromagnetic cantilevers

Author:

Świadkowski BORCID,Majstrzyk W,Kunicki PORCID,Sierakowski A,Gotszalk T

Abstract

Abstract Atomic force microscopy (AFM) belongs to the high resolution and high sensitivity surface imaging technologies. In this method force interactions between the tip and the surface are observed to characterize sample properties. In the so-called contact AFM (C AFM) mode the tip is brought into continuous contact with the sample. Significant progress in the AFM technology can be obtained, when the so-called active cantilever technology is implemented in the surface measurements. The built-in deflection actuator enables very precise excitation of the cantilever. Moreover, as the mass of the beam is very small the static beam displacement can be controlled in the wide frequency range. In the experiments, which we describe in this article, we applied the so called active electromagnetic cantilevers. They integrate a conductive loop which, when immersed in the magnetic field and biased with electric current, acts as an electromagnetic deflection actuator. The induced and precisely estimated Lorentz force, which is a function of bias current, cantilever geometry and magnetic field makes the cantilever deflect. Moreover, the probe stiffness can be calibrated with lower uncertainty as in the case of standard thermomechanical analysis. NZ AFM technology required application of a novel control algorithm, called PredPID, in which the cantilever bending caused by a proportional-integral-derivative (PID) block maintaining the constant load force was predicted.

Funder

Metrology of molecular interactions using electromagnetically actuated cantilevers ‐ MetMolMEMS

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3