Accurate detection of subsurface microcavity by bimodal atomic force microscopy

Author:

Lou Pengtao,Bi ZhuanfangORCID,Shang Guangyi

Abstract

Abstract Subsurface detection capability of bimodal atomic force microscopy (AFM) was investigated using the buried microcavity as a reference sample, prepared by partially covering a piece of highly oriented pyrolytic graphite (HOPG) flake with different thickness on a piece of a cleaned CD-R disk substrate. This capability can be manifested as the image contrast between the locations with and without the buried microcavities. The theoretical and experimental results demonstrated that the image contrast is significantly affected by the critical parameters, including the second eigenmode amplitude and frequency as well as local structural and mechanical properties of the sample itself. Specifically, improper parameter settings generally lead to incorrect identification of the buried microcavity due to the contrast reduction, contrast reversal and even disappearance. For accurate detection, the second eigenmode amplitude should be as small as possible on the premise of satisfying the signal-to-noise ratio and second eigenmode frequency should be close to the resonance frequency of the cantilever. In addition, the detectable depth is closely related to microcavity dimension (thickness and width) of the HOPG flake and local stiffness of the sample. These results would be helpful for further understanding of the detection mechanism of bimodal AFM and facilitating its application in nano-characterization of subsurface structures, such as the micro-/nano- channels to direct the flow of liquids in lab-on-a-chip devices.

Funder

Fundational Research Funds for the Central Universities

National 973 Project

National Natural Science Foundation of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3