Recent progress on the low and high temperature performance of nanoscale engineered Li-ion battery cathode materials

Author:

Jayasree Silpasree S,Murali Aswathy S,Nair Shantikumar,Santhanagopalan DhamodaranORCID

Abstract

Abstract Lithium ion batteries (LIB) are the domain power house that gratifies the growing energy needs of the modern society. Statistical records highlight the future demand of LIB for transportation and other high energy applications. Cathodes play a significant role in enhancement of electrochemical performance of a battery, especially in terms of energy density. Therefore, numerous innovative studies have been reported for the development of new cathode materials as well as improving the performance of existing ones. Literature designate stable cathode-electrolyte interface (CEI) is vital for safe and prolonged high performance of LIBs at different cycling conditions. Considering the context, many groups shed light on stabilizing the CEI with different strategies like surface coating, surface doping and electrolyte modulation. Local temperature variation across the globe is another major factor that influences the application and deployment of LIB chemistries. In this review, we discuss the importance of nano-scale engineering strategies on different class of cathode materials for their improved CEI and hence their low and high temperature performances. Based on the literature reviewed, the best nano-scale engineering strategies investigated for each cathode material have been identified and described. Finally, we discuss the advantages, limitations and future directions for enabling high performance cathode materials for a wide range of applications.

Funder

Amrita Vishwa Vidyapeetham University

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3