A Novel Sugar-Assisted Solvothermal Method for FeF2 Nanomaterial and Its Application in LIBs

Author:

Zhang Yanli1,Zhang Qiang1,He Xiangming2ORCID,Wang Li2ORCID,Wang Jingxin1,Dong Liangliang1,Xie Yingpeng1,Hao Yongsheng1

Affiliation:

1. School of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China

2. Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China

Abstract

Due to its quite high theoretical specific-energy density, FeF2 nanomaterial is a good candidate for the cathode material of high-energy lithium-ion batteries. The preparation of FeF2 nanomaterial is very important for its application. At present, the preparation process mostly involves high temperature and an inert atmosphere, which need special or expensive devices. It is very important to seek a low-temperature and mild method, without the need for high temperature and inert atmosphere, for the preparation and following application of FeF2 nanomaterial. This article reports a novel sugar-assisted solvothermal method in which the FeF3∙3H2O precursor is reduced into FeF2 nanomaterial by carbon derived from the dehydration and condensation of sugar. The obtained FeF2 nanomaterials are irregular granules of about 30 nm, with inner pores inside each granule. Electrochemical tests show the FeF2 nanomaterial’s potential as a lithium-ion battery cathode material.

Funder

Natural Science Foundation of Liaoning Province

University Innovation Talent Foundation of Liaoning Province

State Key Laboratory of Fine Chemicals, Dalian University of Technology

Natural Science Foundation of Liaoning Province Department of Education

Program for the Middle-aged Innovative Talents of Shenyang

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3