Effects of fossil fuel and total anthropogenic emission removal on public health and climate

Author:

Lelieveld J.ORCID,Klingmüller K.,Pozzer A.ORCID,Burnett R. T.,Haines A.ORCID,Ramanathan V.

Abstract

Anthropogenic greenhouse gases and aerosols are associated with climate change and human health risks. We used a global model to estimate the climate and public health outcomes attributable to fossil fuel use, indicating the potential benefits of a phaseout. We show that it can avoid an excess mortality rate of 3.61 (2.96–4.21) million per year from outdoor air pollution worldwide. This could be up to 5.55 (4.52–6.52) million per year by additionally controlling nonfossil anthropogenic sources. Globally, fossil-fuel-related emissions account for about 65% of the excess mortality, and 70% of the climate cooling by anthropogenic aerosols. The chemical influence of air pollution on aeolian dust contributes to the aerosol cooling. Because aerosols affect the hydrologic cycle, removing the anthropogenic emissions in the model increases rainfall by 10–70% over densely populated regions in India and 10–30% over northern China, and by 10–40% over Central America, West Africa, and the drought-prone Sahel, thus contributing to water and food security. Since aerosols mask the anthropogenic rise in global temperature, removing fossil-fuel-generated particles liberates 0.51(±0.03) °C and all pollution particles 0.73(±0.03) °C warming, reaching around 2 °C over North America and Northeast Asia. The steep temperature increase from removing aerosols can be moderated to about 0.36(±0.06) °C globally by the simultaneous reduction of tropospheric ozone and methane. We conclude that a rapid phaseout of fossil-fuel-related emissions and major reductions of other anthropogenic sources are needed to save millions of lives, restore aerosol-perturbed rainfall patterns, and limit global warming to 2 °C.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3