Abstract
Abstract
Polymeric materials, including polyethylene terephthalate (PET), are widely used in various fields because of their beneficial properties. Functional films are deposited on these materials through different approaches, such as plasma-enhanced atomic layer deposition (PEALD), to enhance their performance and prolong their life span. However, the inert and thermally fragile nature of most polymers hinders deposition. We developed a strategy for the PEALD of nanoscale Al2O3 films on PET substrates. First, a PET substrate is subjected to alkali treatment, which gives it basic hydrophilicity for the subsequent dopamine modification. After 24 h of dopamine deposition, the substrate shows adequate active sites (phenolic hydroxyl groups), which can chemisorb large amounts of precursor during the initial deposition. The island growth mode was observed during the PEALD processes. We analyzed the detailed chemical components of Al2O3 on alkali-treated PET and dopamine-modified PET. After 100 cycles of deposition, the Al2O3 films on both samples contained much hydrogen. Benefitting from the more active sites, we observed more continuous Al2O3 film on dopamine-modified PET, which exhibited excellent water vapor blocking performance. Our findings suggest that dopamine could act as a ‘bridge’ between polymers and PEALD functional films.
Funder
Science and Technology Commission of Shanghai Municipality, China
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献