Stabilized Nickel‐Rich‐Layered Oxide Electrodes for High‐Performance Lithium‐Ion Batteries

Author:

Ahaliabadeh Zahra1ORCID,Miikkulainen Ville1,Mäntymäki Miia2,Colalongo Mattia1,Mousavihashemi Seyedabolfazl1,Yao Lide3,Jiang Hua3,Lahtinen Jouko3,Kankaanpää Timo4,Kallio Tanja1ORCID

Affiliation:

1. Department of Chemistry and Materials Science (CMAT), School of Chemical Engineering Aalto University 02150 Espoo Finland

2. Department of Chemistry University of Helsinki 00014 Helsinki Finland

3. Department of Applied Physics, School of Science Aalto University 02150 Espoo Finland

4. Umicore Finland Oy 67101 Kokkola Finland

Abstract

Next‐generation Li‐ion batteries are expected to exhibit superior energy and power density, along with extended cycle life. Ni‐rich high‐capacity layered nickel manganese cobalt oxide electrode materials (NMC) hold promise in achieving these objectives, despite facing challenges such as capacity fade due to various degradation modes. Crack formation within NMC‐based cathode secondary particles, leading to parasitic reactions and the formation of inactive crystal structures, is a critical degradation mechanism. Mechanical and chemical degradation further deteriorate capacity and lifetime. To mitigate these issues, an artificial cathode electrolyte interphase can be applied to the active material before battery cycling. While atomic layer deposition (ALD) has been extensively explored for active material coatings, molecular layer deposition (MLD) offers a complementary approach. When combined with ALD, MLD enables the deposition of flexible hybrid coatings that can accommodate electrode material volume changes during battery operation. This study focuses on depositing ‐titanium terephthalate thin films on a electrode via ALD‐MLD. The electrochemical evaluation demonstrates favorable lithium‐ion kinetics and reduced electrolyte decomposition. Overall, the films deposited through ALD‐MLD exhibit promising features as flexible and protective coatings for high‐energy lithium‐ion battery electrodes, offering potential contributions to the enhancement of advanced battery technologies and supporting the growth of the EV and stationary battery industries.

Funder

European Synchrotron Radiation Facility

Business Finland

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3