On the potential of particle engineered anti-erosion coatings for leading edge protection of wind turbine blades: Computational studies

Author:

Jespersen K M,Monastyreckis G,Mishnaevsky L

Abstract

Abstract The potential of particle and fiber reinforced anti-erosion coatings for the protection of wind turbine blades is explored through computational modelling. A hypothesis that stiff disc-shaped particle or fiber reinforcements embedded in viscoelastic coatings ensure better erosion protection is validated numerically, and mechanisms of this effect are analyzed. A computational unit cell model of coatings with embedded fibers (fiber pulp) or disc particles subject to rain droplet impact is developed, and series of computational experiments is carried out. The distribution and scattering of stress waves from the rain droplet impact and damping properties are analyzed for homogeneous viscoelastic polyurethane coatings, coatings with discshaped particles, and fiber pulp. It is shown that the stress waves are increasingly scattered, and the damping is increased with higher volume percentage of the fibers. The mechanism of such increased energy dissipation is found to be related to the high local viscoelastic deformation in the regions between closely located fibers and the higher stiffness of the unit cell. The current work demonstrates the high potential of fiber engineered coatings for the improvement of anti-erosion protection of wind turbine blades.

Publisher

IOP Publishing

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3