Effects of Leading-Edge Protection Tape on Wind Turbine Blade Performance

Author:

Sareen Agrim1,Sapre Chinmay A.1,Selig Michael S.2

Affiliation:

1. Graduate Student, Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA

2. Associate Professor, Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA

Abstract

This paper presents results of a study to investigate the impact of using wind protection tape (WPT) to protect the leading edge of wind turbine airfoils from erosion. The tests were conducted on the DU 96-W-180 wind turbine airfoil at three Reynolds numbers between 1 and 1.85 million and angles of attack spanning the low drag range of the airfoil. Tests were run by varying the chordwise extent of the wind protection tape on the upper and lower surface in order to determine the relative impact of each configuration on the aerodynamics of the airfoil. The objective was to assess the performance losses due to the wind protection tape and compare them with losses due to leading-edge erosion in order to determine the potential benefits of using such tape to protect wind turbine blades. Results showed that the application of wind protection tape caused a drag increase of 5–15% for the various configurations tested and was significantly less detrimental to airfoil performance than leading edge erosion that could otherwise occur.

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3