Abstract
A review of the root causes and mechanisms of damage and failure to wind turbine blades is presented in this paper. In particular, the mechanisms of leading edge erosion, adhesive joint degradation, trailing edge failure, buckling and blade collapse phenomena are considered. Methods of investigation of different damage mechanisms are reviewed, including full scale testing, post-mortem analysis, incident reports, computational simulations and sub-component testing. The most endangered regions of blades include the protruding parts (tip, leading edges), tapered and transitional areas and bond lines/adhesives. Computational models of different blade damage mechanisms are discussed. The role of manufacturing defects (voids, debonding, waviness, other deviations) for the failure mechanisms of wind turbine blades is highlighted. It is concluded that the strength and durability of wind turbine blades is controlled to a large degree by the strength of adhesive joints, interfaces and thin layers (interlaminar layers, adhesives) in the blade. Possible solutions to mitigate various blade damage mechanisms are discussed.
Funder
Innovation Foundation of Denmark
Subject
General Materials Science
Reference140 articles.
1. Wind Turbines at Sea Account for 5 Per Cent of Global Wind Energy Capacityhttps://www.offshore-energy.biz/wind-turbines-at-sea-account-for-5-per-cent-of-global-wind-energy-capacity/
2. Future of Wind: Deployment, Investment, Technology, Grid Integration and Socio-Economic Aspects (A Global Energy Transformation Paper),2019
3. Global Wind Power Market Report 2021–2027,2021
4. Costs of repair of wind turbine blades: Influence of technology aspects
5. Unplanned Wind Turbine Repairs to Cost Industry $8 Billion+ in 2019https://www.woodmac.com/press-releases
Cited by
50 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献