A Novel Data-Driven Approach with a Long Short-Term Memory Autoencoder Model with a Multihead Self-Attention Deep Learning Model for Wind Turbine Converter Fault Detection

Author:

Torres-Cabrera Joel1ORCID,Maldonado-Correa Jorge12ORCID,Valdiviezo-Condolo Marcelo1ORCID,Artigao Estefanía2ORCID,Martín-Martínez Sergio2ORCID,Gómez-Lázaro Emilio2ORCID

Affiliation:

1. Technological and Energy Research Center (CITE), National University of Loja, Loja 110150, Ecuador

2. Renewable Energy Research Institute (IIER), University of Castilla-La Mancha, 02071 Albacete, Spain

Abstract

The imminent depletion of oil resources and increasing environmental pollution have driven the use of clean energy, particularly wind energy. However, wind turbines (WTs) face significant challenges, such as critical component failures, which can cause unexpected shutdowns and affect energy production. To address this challenge, we analyzed the Supervisory Control and Data Acquisition (SCADA) data to identify significant differences between the relationship of variables based on data reconstruction errors between actual and predicted values. This study proposes a hybrid short- and long-term memory autoencoder model with multihead self-attention (LSTM-MA-AE) for WT converter fault detection. The proposed model identifies anomalies in the data by comparing the reconstruction errors of the variables involved. However, more is needed. To address this model limitation, we developed a fault prediction system that employs an adaptive threshold with an Exponentially Weighted Moving Average (EWMA) and a fixed threshold. This system analyzes the anomalies of several variables and generates fault warnings in advance time. Thus, we propose an outlier detection method through data preprocessing and unsupervised learning, using SCADA data collected from a wind farm located in complex terrain, including real faults in the converter. The LSTM-MA-AE is shown to be able to predict the converter failure 3.3 months in advance, and with an F1 greater than 90% in the tests performed. The results provide evidence of the potential of the proposed model to improve converter fault diagnosis with SCADA data in complex environments, highlighting its ability to increase the reliability and efficiency of WTs.

Funder

the Junta de Comunidades de Castilla-La Mancha

the Spanish Ministry of Economy and Competitiveness and the European Union

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3