Application of ductility exhaustion based damage model to predict creep rupture time of grade 92 steel

Author:

Alang N A,Razak N Ab

Abstract

Abstract To accurately predict the creep rupture time of notched bar becomes a challenge to academia and structural engineer due to complex stress-strain distribution around the notch throat. This paper presents a Finite Element (FE) simulation employing ductility exhaustion based damage model to predict creep rupture time of multiaxial notched bar Grade 92 steel. Three different notch acuity, η = 2.5, 5.0 and 12.0 were simulated and the FE predicted rupture time was compared to the available experimental rupture data. The reduction of creep ductility due to geometrical constraint is considered during the simulation by employing the void growth model. Further reduction in ductility in long term period arises from internal microstructural changes or damage is also accounted. Furthermore, empirical-type exponential prediction model coupled with skeletal stresses is applied to provide upper/lower bounds for short and long term rupture data. It is found that the FE prediction agreed well with the experimental data. At short-term, notched bar ruptured is controlled by the von-Mises stress while at long-term the rupture is controlled by the maximum principal stress.

Publisher

IOP Publishing

Subject

General Medicine

Reference5 articles.

1. Metallurgical evolution and creep strength of 9-12%Cr heat resistant steels at 600C and 650C;Panait,2010

2. Effect of temperature variation on the long-time rupture strength of steels;Robinson;Trans. ASME,1952

3. An analytical and numerical approach to multiscale ductility constraint based model to predict uniaxial/multiaxial creep rupture and cracking rates;Alang;International Journal of Mechanical Sciences,2018

4. Creep-fatigue prediction of low alloy ferritic steels using a strain energy based methodology;Payten,2009

5. A code of practice for conducting notched bar creep tests and for interpreting the data;Webster;Fatigue Fracture Engineering Materials Structures,2004

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3