Numerical Prediction of Creep Rupture Life of Ex-Service and As-Received Grade 91 Steel at 873 K

Author:

FERDOUS IMAM UL,ALANG NASRUL AZUAN,Alias Juliawati,Nadzir Suraya Mohd

Abstract

Infallible creep rupture life prediction of high  temperature steel needs long hours of robust  testing over a domain of stress and temperature. A substantial amount of effort has been made to  develop alternative methods to reduce the time  and cost of testing. This study presents a finite  element analysis coupled with a ductility based  damage model to predict creep rupture time  under the influence of multiaxial stress state of  ex-service and as-received Grade 91 steel at 873 K. Three notched bar samples with different  acuity ratios of 2.28, 3.0 and 4.56 are modelled in commercial Finite Element (FE) software,  ABAQUS v6.14 in order to induce different stress  state levels at notch throat area and investigate  its effect on rupture time. The strain-based  ductility exhaustion damage approach is  employed to quantify the damage state. The  multiaxial ductility of the material that is  required to determine the damage state is  estimated using triaxiality-ductility Cock and  Ashby relation. Further reduction of the ductility  due to the different creep mechanisms over a  short and long time is also accounted for in the  prediction. To simulate the different material conditions: ex-service and as-received material,  different creep coefficients (A) have been  assigned in the numerical modelling. In the case  of ex-service material, using mean best fit data  of minimum creep strain rate gives a good life  prediction, while for new material, the lower  bound creep coefficient should be employed to  yield a comparable result with experimental  data. It is also notable that ex-service material  deforms faster than as-received material at the  same stress level. Moreover, higher acuity  provokes damage to concentrate on the small  area around the notch, which initiates higher  rupture life expectancy. It also found out that,  the stress triaxiality and the equivalent creep  strain influence the location of damage initiation  around the notch area.

Publisher

Universiti Malaysia Pahang Publishing

Subject

Mechanical Engineering,Automotive Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3