Experimental investigation and ANN prediction for part quality improvement of fused deposition modeling parts

Author:

Tura A D,Mamo H B,Jelila Y D,Lemu H G

Abstract

Abstract Fused deposition modeling (FDM) is the most prevalent thermoplastic additive manufacturing technology. Many input parameters and their settings have a significant impact on the quality and functionality of FDM parts produced. To enhance the quality of parts, it is critical to be able to predict surface roughness distribution in advance. The development of artificial neural network (ANN) models to forecast the impact of main FDM process factors on the part quality in terms of surface roughness while utilizing ABS (Acrylonitrile butadiene styrene) material is described in this work. Taguchi L9 orthogonal array was used to plan the experiments. Different printing input parameters such as layer thickness, orientation angle, and infill angle are used in the experiments. In terms of controllable input parameters, ANN is used to construct a predictive mathematical model. The effects of various printing settings on surface roughness were investigated using analysis of variance (ANOVA), main effect plots, and contour plots. Experiment findings and regression value are used to validate the models. The model has shown to be capable of adequately predicting responses within a maximum percentage error of 4.664 percent of arithmetic roughness average (Ra), which is a good agreement.

Publisher

IOP Publishing

Subject

General Medicine

Reference29 articles.

1. A review on the fused deposition modeling (FDM) 3D printing: Filament processing, materials, and printing parameters;Kristiawan;Open Eng.,2021

2. Recent Progress of Fused Deposition Modeling (FDM) 3D Printing: Constructions, Parameters and Processings;Prayitno;IOP Conference Series: Mater. Sci. Eng.,2021

3. Multi-Objective Optimization for FDM Process Parameters with Evolutionary Algorithms, Fused Deposition Modeling Based 3D Printing. Materials Forming, Machining and Tribology;Yodo;Springer Int Publishing,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3