Predicting Mechanical Strength and Optimized Parameters in FDM-Printed Polylactic Acid Parts Via Artificial Neural Networks and Desirability Analysis

Author:

Abdulridha Hind H.1ORCID,Abbas Tahseen F.1,Bedan Aqeel S.1

Affiliation:

1. University of Technology

Abstract

Abstract Fused deposition modeling (FDM) is a commonly used additive manufacturing (AM) technique in both domestic and industrial end-product fabrications. It produces prototypes and parts with complex geometric designs, which has the major benefits of eliminating the need for expensive tooling and flexibility. However, the produced parts often face poor part strength due to anisotropic fabrication strategies. The printing procedure, the kind of material utilized, and the printing parameters all have a significant impact on the mechanical characteristics of the printed item. In order to predict the mechanical properties related to printed components made with the use of FDM and Polylactic Acid (PLA) material, this study concentrates on developing a prediction model utilizing Artificial Neural Networks (ANNs). This study used the Taguchi design of experiments technique, utilizing (L25) orthogonal array as well as a Neural Network (NN) method with two layers and 15 neurons. The effect of FDM parameters (layer thickness (mm), percentage of infill density, number of top/bottom layers, shell thickness (mm), and infill overlap percentage) on ultimate tensile and compressive strength (UTS and UCS) was examined through analysis of variance (ANOVA). With an ANOVA result of 67.183% and 40.198%, respectively, infill density percentage was found to be the most significant factor influencing UCS and UTS dependent on other parameters. The predicted results demonstrated valuable agreement with experimental values, with mean squared errors of (0.098) and (0.326) for UTS and UCS, respectively. The predictive model produces flexibility in selecting the optimal setting based on applications.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3