Study on material behaviours of additively manufactured high-impact polystyrene using artificial neural networks

Author:

Nguyen Phan Quoc Khang,Zohdi Nima,Zhang Y. X.,Zhang Zhongpu,Yang RichardORCID

Abstract

AbstractFused Filament Fabrication (FFF), a process parameters-dependent manufacturing method, currently dominates the additive manufacturing (AM) sector because of its prominent ability to produce parts with intricate profiles, customise products, and minimise waste. Though the effects of FFF process parameters were investigated experimentally, recent research highlighted the importance of developing numerical modelling and computational methods on optimising the FFF printing process and FFF-printed materials. This study aims to investigate the tensile strength (TS) of FFF-printed high-impact polystyrene (HIPS) via devising a systematic testing and analysis framework, which combines experimental testing, representative volume element (RVE)-finite element method (FEM), rule of mixture (ROM), and artificial neural networks (ANN). HIPS samples are fabricated using FFF considering the variations of infill density, layer thickness, nozzle temperature, raster angle, and build orientation, and tested with standard tensile testing. The rule of mixtures (ROM) and its modified version (MROM) are employed to calculate the TS of longitudinally and transversely built samples at various infill densities, respectively, while an ANN model is constructed to investigate the effect of material anisotropy precisely. The optimal ANN architecture is built with five hidden layers with the number of neurons in each layer as 44, 82, 169, 362, and 50. Although both MROM and ANN perform well on the validation set, ANN exhibits superior accuracy with only a maximum error of 0.13% for training set and 11% for validation set. The combination of the RVE-FEM, MROM, and ANN approaches can significantly improve the FFF printing process of polymers for optimisation.

Funder

Australian Research Council

Western Sydney University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3