Self-cleaning of glass surface to maximize the PV cell efficiency

Author:

Ayaz Adnan,Ahmad Hussain,Ahmad Faraz,Khan Ahmad,hasnain Tarmazi S. M.,Gul Rizwan M.,saher Saim

Abstract

Abstract Photovoltaic (PV) modules are widely used for harnessing solar energy which ensure maximum output when their glass surface is clean. However, PV modules are open to dust, grime and other contaminations which get deposited on their surface causing reduction in transmittance and hence their efficiency reduces. It is therefore required to clean the glass surface of PV modules time to time either manually by labor or using some special arrangements such as automated systems. However, these techniques are either laborious or require extra energy. Therefore, another solution to offset such complications is to use chemical coatings which ensure self-cleaning of glass surface by increasing water contact angle. In the present study, two types of water repellent chemicals (such as trimethylchlorosilane and hexamethyldisilazane) have been used to coat the glass surface using dip coating technique. The performance of such coated glass slides has been investigated using some important characterization techniques, such as finding transmittance by spectrophotometer and measuring water contact angle using a high resolution camera. Moreover, the self-cleaning effect has been observed using a microbalance to measure dust on coated glass exposed to open atmosphere and compared with uncoated glass. The results revealed that these coatings have increased the water contact angle up to 149% which reduces friction between the glass surface and water droplets. Moreover, the friction reduction helps in mobility of water droplets which in turn can easily carry out dust along with them, thus improving the efficiency of PV module.

Publisher

IOP Publishing

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3