Lifecycle-based feasibility indicators for floating solar photovoltaic plants along with implementable energy enhancement strategies and framework-driven assessment approaches leading to advancements in the simulation tool

Author:

Kumar Nallapaneni Manoj,Islam Sayemul,Podder Amit Kumer,Selim Ali,Bajaj Mohit,Kamel Salah

Abstract

Floating solar photovoltaic (FSPV) systems that allow solar panel installations on water bodies are gaining popularity worldwide as they mainly avoid land-use conflicts created by, and for their superior performance over, ground-mounted photovoltaic installations. Though many studies in the FSPV literature showed how superior FSPVs perform, we still believe there are few potential opportunities for further enhancement in performance. On the other side, the industry’s delivery of FSPV installation service to clients is often questioned, highlighting that FSPV modeling is compromised, leading to false promises on energy performance and feasibility. This might be true given the lack of modeling tools specific to FSPV. With this hypothesis, this review investigates existing modeling approaches by FSPV researchers/industry people practicing and potentially implementable energy performance enhancement strategies leading to the advancement of modeling tools. The review outcome suggested that every FSPV researcher/service provider must carefully design and optimize the FSPV system considering suitable performance enhancement strategies, for instance, replacing conventional solar panels with bifacial ones and integrating various cooling and cleaning methods. Also, while assessing the feasibility, they must follow the lifecycle-based performance indicators that broadly fall under the techno-economic-environmental and social aspects with an appropriate framework-driven assessment approach. Lastly, we have shown a conceptual FSPV project simulation tool consolidating the performance indicators and explored performance enhancement strategies that we believe would help the FSPV community.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3