Radial electric field and density fluctuations measured by Doppler reflectometry during the post-pellet enhanced confinement phase in W7-X

Author:

Estrada T.ORCID,Carralero D.ORCID,Windisch T.,Sánchez E.ORCID,García-Regaña J.M.ORCID,Martínez-Fernández J.,de la Peña A.,Velasco J.L.ORCID,Alonso J.A.ORCID,Beurskens M.,Bozhenkov S.ORCID,Damm H.,Fuchert G.,Kleiber R.ORCID,Pablant N.ORCID,Pasch E.,W7-X team the

Abstract

Abstract Radial profiles of density fluctuations and the radial electric field, E r, have been measured using Doppler reflectometry during the post-pellet enhanced confinement phase achieved, under different heating power levels and magnetic configurations, during the 2018 W7-X experimental campaign. A pronounced E r-well is measured with local values as high as −40 kV m−1 in the radial range ρ ∼ 0.7–0.8 during the post-pellet enhanced confinement phase. The maximum E r intensity scales with both the plasma density and electron cyclotron heating power level, following a similar trend to the plasma energy content. A good agreement is found when the experimental E r profiles are compared to simulations carried out using the neoclassical codes, the drift kinetic equation solver (DKES) and kinetic orbit-averaging solver for stellarators (KNOSOS). The density fluctuation level decreases from the plasma edge toward the plasma core and the drop is more pronounced in the post-pellet enhanced confinement phase than in reference gas-fuelled plasmas. Besides, in the post-pellet phase, the density fluctuation level is lower in the high iota magnetic configuration than in the standard one. To determine whether this difference is related to the differences in the plasma profiles or to the stability properties of the two configurations, gyrokinetic simulations have been carried out using the codes stella and EUTERPE. The simulation results point to the plasma profile evolution after the pellet injection and the stabilization effect of the radial electric field profile as the dominant players in the stabilization of the plasma turbulence.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3