The investigation of edge-localized modes on the Globus-M2 tokamak using Doppler backscattering

Author:

Ponomarenko A.ORCID,Gusev V.ORCID,Kiselev E.,Kurskiev G.ORCID,Minaev V.,Petrov A.,Petrov Y.ORCID,Sakharov N.,Solokha V.ORCID,Teplova N.,Shchegolev P.ORCID,Yashin A.ORCID,Zhiltsov N.ORCID

Abstract

Abstract The first results of investigation of edge localized modes (ELMs) in the Globus-M2 tokamak using the Doppler backscattering method are presented in this paper. Specifically, ELMs that are initiated by sawtooth crashes in the H-mode are discussed. The goal of this paper is study plasma turbulence behaviour during ELMs and to showcase what ELM characteristics can be obtained using Doppler backscattering (DBS). An increase of the poloidal rotation velocity during an ELM burst and a decrease in the inter-ELM periods was observed. The effect of ELMs on the plasma turbulence was investigated and estimated to span around 6 cm inside the separatrix. This is to do with the fact that the sawtooth crashes which are responsible for initiating the ELMs take place in the core plasma. Additional experiments with standard reflectometry indicate that ELMs develop 3 cm inside the separatrix where the pedestal region is believed to be in Globus-M2. The direction of the expansion of the ELMs from the inner plasma region to the edge was determined and the velocity was estimated to be around 8 km s−1. During a single ELM burst a series of filament structures were found in the peripheral DBS channels. In an attempt to understand the processes involved modelling of the reaction of the DBS signals to filaments was done using the BOUT ++ and IPF-FD3D full-wave codes, and the cases for both linear and nonlinear scattering were considered. The results show that the presence of nonlinear scattering during ELMs can lead to an overestimation of the measured velocity values in the region of filament existence near the separatrix.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3