Full-flux-surface effects on electrostatic turbulence in Wendelstein 7-X-like plasmas

Author:

Wilms FelixORCID,Bañón Navarro AlejandroORCID,Jenko FrankORCID

Abstract

AbstractWe present the first nonlinear, gyrokinetic, surface-global simulations of a Wendelstein 7-X-like stellarator with kinetic electrons. As a first application, we investigate the interplay between Ion Temperature Gradient (ITG) and Trapped Electron Mode (TEM) driven turbulence in a Full-Flux-Surface (FFS) approach, as well as the effect of a neoclassical radial electric field, something that escapes the capabilities of flux-tube simulations. We find that even in this more complex setup, ITG turbulence is stabilised through a finite density gradient while TEM turbulence remains relatively weak. Furthermore, we show that the effect of the radial electric field itself is small in comparison with the variation of the gradients. Nevertheless, we observe that for some of the cases shown here, there is not only quantitative but also qualitative disagreement between flux-tube and FFS simulations, in contrast to earlier studies with an adiabatic electron model. These results emphasise the potential importance of retaining geometrical variations on the flux-surface when describing stellarator turbulence under realistic conditions.

Funder

Euratom Research and Training Programme

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Reference22 articles.

1. Stellarator-tokamak energy confinement comparison based on ASDEX upgrade and Wendelstein 7-X hydrogen plasmas;Stroth;Nucl. Fusion,2020

2. Coarse-grained gyrokinetics for the critical ion temperature gradient in stellarators;Roberg-Clark;Phys. Rev. Res.,2022

3. Direct microstability optimization of stellarator devices;Jorge,2023

4. Ion temperature clamping in Wendelstein 7-X electron cyclotron heated plasmas;Beurskens;Nucl. Fusion,2021

5. Pellet fueling experiments in Wendelstein 7-X;Baldzuhn;Plasma Phys. Control. Fusion,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3