Abstract
Abstract
A confinement database with mainly electron-heated hydrogen plasmas from ASDEX Upgrade and Wendelstein 7-X was assembled. Stellarator confinement scaling expressions describe both standard discharges in the stellarator and L-mode plasmas in the tokamak similarly well and indicate a similar quality of energy confinement in both devices. While the energy confinement time in ASDEX Upgrade benefits from the smaller aspect ratio of the device, the transport coefficients in Wendelstein 7-X appear to be smaller possibly due to reduced average magnetic field curvature. A physics based confinement scaling is derived from a model that successfully describes transport in tokamaks. The dimensionally correct scaling has very similar parameter dependencies as the stellarator scalings and reproduces also the trends in the data from ITER L- and H-mode databases reasonably well. On the basis of this scaling, which represents the confinement times of the present data base, average tokamak L-mode and H-mode confinement is 7% lower and 76% higher, respectively.
Subject
Condensed Matter Physics,Nuclear and High Energy Physics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献