Energy deposition and melt deformation on the ITER first wall due to disruptions and vertical displacement events

Author:

Coburn J.ORCID,Lehnen M.ORCID,Pitts R.A.ORCID,Simic G.ORCID,Artola F.J.ORCID,Thorén E.ORCID,Ratynskaia S.ORCID,Ibano K.ORCID,Brank M.ORCID,Kos L.ORCID,Khayrutdinov R.,Lukash V.E.,Stein-Lubrano B.ORCID,Matveeva E.ORCID,Pautasso G.

Abstract

Abstract An analysis workflow has been developed to assess energy deposition and material damage for ITER vertical displacement events (VDEs) and major disruptions (MD). This paper describes the use of this workflow to assess the melt damage to be expected during unmitigated current quench (CQ) phases of VDEs and MDs at different points in the ITER research plan. The plasma scenarios are modeled using the DINA code with variations in plasma current I p, disruption direction (upwards or downwards), Be impurity density n Be, and diffusion coefficient χ. Magnetic field line tracing using SMITER calculates time-dependent, 3D maps of surface power density q on the Be-armored first wall panels (FWPs) throughout the CQ. MEMOS-U determines the temperature response, macroscopic melt motion, and final surface topology of each FWP. Effects of Be vapor shielding are included. Scenarios at the baseline combination of I p and toroidal field (15 MA/5.3 T) show the most extreme melt damage, with the assumed n Be having a strong impact on the disruption duration, peak q and total energy deposition to the first wall. The worst-cases are upward 15 MA VDEs and MDs at lower values of n Be, with q ⊥,max = 307 MW m−2 and maximum erosion losses of ∼2 mm after timespans of ∼400–500 ms. All scenarios at 5 MA avoided melt damage, and only one 7.5 MA scenario yields a notable erosion depth of 0.25 mm. These results imply that disruptions during 5 MA, and some 7.5 MA, operating scenarios will be acceptable during the pre-fusion power operation phases of ITER. Preliminary analysis shows that localized melt damage for the worst-case disruption should have a limited impact on subsequent stationary power handling capability.

Funder

Centrum för idrottsforskning

Ministry of Education, Youth and Science

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3