Wall heating by subcritical energetic electrons generated by the runaway electron avalanche source *

Author:

Beidler M.T.ORCID,del-Castillo-Negrete D.ORCID,Shiraki D.ORCID,Baylor L.R.ORCID,Hollmann E.M.ORCID,Lasnier C.J.ORCID

Abstract

Abstract Subcritical energetic electrons (SEEs) produced by the runaway electron (RE) avalanche source at energies below the runaway threshold are found to be the primary contributor to surface heating of plasma-facing components (PFCs) during final loss events. This finding is supported by theoretical analysis, computational modeling with the Kinetic Orbit Runaway electrons Code (KORC), and qualitative agreement with DIII-D experimental observations. The avalanche source generates significantly more secondary electrons below the runaway threshold, which thermalize rapidly when well-confined. However, during a final loss event, the RE beam impacts the first wall, and SEEs are deconfined before they can thermalize. Additionally, because the energy deposition length decreases faster than energy, the deposited energy density, and thus the maximum PFC surface temperature change, is larger for SEEs than REs. KORC simulations employ an analytic first wall to model particle deconfinement onto a non-axisymmetric wall composed of individual tiles. PFC surface heating is calculated using a 1D model extended to include an energy-dependent deposition length scale. Simulations of DIII-D qualitatively agree with infrared (IR) imaging only when SEEs from the avalanche source are included. These results demonstrate that SEEs are the dominant contributor to PFC surface heating and indicate that the avalanche source plays a critical role in the PFC damage caused during final loss events. The prominence of SEEs also has important implications for interpreting IR imaging, one of the primary diagnostics for RE-wall interaction diagnosis, despite REs dominating the energy and current density. This result improves predictions of wall damage due to post-disruption REs to estimate material lifetime and design RE mitigation systems for ITER and future reactors.

Funder

Fusion Energy Sciences

Publisher

IOP Publishing

Reference59 articles.

1. Multiplication of accelerated electrons in a tokamak;Sokolov;JETP Lett.,1979

2. Collisional avalanche exponentiation of runaway electrons in electrified plasmas;Jayakumar;Phys. Lett. A,1993

3. Electron and ion runaway in a fully ionized gas. I;Dreicer;Phys. Rev.,1959

4. Relativistic limitations on runaway electrons;Connor;Nucl. Fusion,1975

5. Theory for avalanche of runaway electrons in tokamaks;Rosenbluth;Nucl. Fusion,1997

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3