Abstract
Abstract
In future fusion reactors, extended melt pools in combination with strong plasma-induced accelerations, suggest that the metallic melt could reach the gaps between castellated plasma-facing components, potentially accompanied by profound changes in their mechanical response. The first results of a combined experimental and modelling effort to elucidate the physics of melt transport across gaps are presented. Transient melting of specially designed tungsten samples featuring toroidal gaps has been achieved in ASDEX Upgrade providing direct evidence of gap bridging. Detailed modelling with the MEMENTO melt dynamics code is reported. Empirical evidence and simulations reveal that the presence of gaps can be safely ignored in macroscopic melt motion predictions as well as that the re-solidification limited melt spreading facilitates gap bridging and leads to poor melt attachment. The findings are discussed in the context of ITER and DEMO.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献