Development of a nano biosensor for anti-gliadin detection for Celiac disease based on suspension microarrays

Author:

Kharati Maryam,Rabiee MohammadORCID,Rostami-Nejad Mohammad,Aghamohammadi Elham,Asadzadeh-Aghdaei Hamid,Zali Mohammad Reza,Rabiee NavidORCID,Fatahi YousefORCID,Bagherzadeh Mojtaba,Webster Thomas JORCID

Abstract

Abstract Celiac disease is an autoimmune disorder represented by the ingestion of the gluten protein usually found in wheat, barley and rye. To date, ELISA has been the most accurate method for determining the presence of anti-gliadin, which is cumbersome, expensive (compared to a suspension microarray technique), and requires extensive sample preparation. In this study, in order to establish a more accurate assay to identify gliadin at lower concentrations, optical nano biosensors using an indirect immunoassay method for gliadin detection was designed and fabricated. For this, polycaprolactone (PCL) nano- to micro-beads were fabricated as a platform for the gliadin antigen which were optimized and nano functionalized with amine groups for such purposes. The gliadin antibody, which is selective to gliadin, was then added to the beads. Static light scattering tests were conducted to determine PCL particle size distribution and sizes were found from 0.1 to 30 μm, which is suitable for flowcytometry detection devices. Anti-gliadin detection was performed using an anti IgG mouse antibody conjugated with FITC in a flow cytometry device to detect the smallest particle. Fluorescence intensity was investigated at different concentrations of anti-gliadin and a standard curve used to determine gluten concentration based on fluorescence intensity. Results showed that the fluorescence intensity increased with greater concentrations of anti-gliadin providing a very effective method of detection due to selectivity at a 5 ppm detection limit. This represents a new highly sensitive and fast method for anti-gliadin detection. Further, the disuse of a cross linker and the use of a dedicated antibody at a very low level (1 μl) made this new method very economical to identify anti-gliadin concentrations at the nano level. In summary, this study provides a new, more accurate and sensitive, as well as less expensive system to detect anti-gliadin for the improved diagnosis of celiac disease.

Funder

Shahid Beheshti University of Medical Sciences

Publisher

IOP Publishing

Subject

General Nursing

Reference37 articles.

1. Subclinical celiac disease and gluten sensitivity;Nejad;Gastroenterology and Hepatology from bed to bench,2011

2. Electrochemical microfluidic micromotors-based immunoassay for C-reactive protein determination in preterm neonatal samples with sepsis suspicion;Molinero-Fernández;Anal. Chem.,2020

3. Self-powered temperature sensor with seebeck effect transduction for photothermal–thermoelectric coupled immunoassay;Huang;Anal. Chem.,2020

4. Wash-free, digital immunoassay in polydisperse droplets;Byrnes;Anal. Chem.,2020

5. Coeliac disease;Green;The Lancet,2003

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3