A multi-level feature-fusion-based approach to breast histopathological image classification

Author:

Ding Wei-LongORCID,Zhu Xiao-Jie,Zheng Kui,Liu Jin-Long,You Qing-Hua

Abstract

Abstract Previously, convolutional neural networks mostly used deep semantic feature information obtained from several convolutions for image classification. Such deep semantic features have a larger receptive field, and the features extracted are more effective as the number of convolutions increases, which helps in the classification of targets. However, this method tends to lose the shallow local features, such as the spatial connectivity and correlation of tumor region texture and edge contours in breast histopathology images, which leads to its recognition accuracy not being high enough. To address this problem, we propose a multi-level feature fusion method for breast histopathology image classification. First, we fuse shallow features and deep semantic features by attention mechanism and convolutions. Then, a new weighted cross entropy loss function is used to deal with the misjudgment of false negative and false positive. And finally, the correlation of spatial information is used to correct the misjudgment of some patches. We have conducted experiments on our own datasets and compared with the base network Inception-ResNet-v2, which has a high accuracy. The proposed method achieves an accuracy of 99.0% and an AUC of 99.9%.

Funder

the foundations of major weak discipline construction project of pu-dong health and family planning commission of Shanghai

Zhejiang public welfare technology research plan / industrial project

Publisher

IOP Publishing

Subject

General Nursing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3