A novel automatic annotation method for whole slide pathological images combined clustering and edge detection technique

Author:

Ding Wei‐long1ORCID,Liao Wan‐yin1ORCID,Zhu Xiao‐jie1,Zhu Hong‐bo2ORCID

Affiliation:

1. College of Computer Science & Technology Zhejiang University of Technology Hangzhou China

2. Department of Pathology, Shanghai Pudong Hospital Fudan University Affiliated Pudong Medical Center Shanghai China

Abstract

AbstractPixel‐level labeling of regions of interest in an image is a key step in building a labeled training dataset for supervised deep learning networks of images. However, traditional manual labeling of cancerous regions in digital pathological images by doctors is time‐consuming and inefficient. To address this issue, this paper proposes an automatic labeling method for whole slide images, which combines clustering and edge detection techniques. The proposed method utilizes the multi‐level feature fusion model and the Long‐Short Term Memory network to discriminate the cancerous nature of the whole slide images, thereby improving the classification accuracy of the whole slide images. Subsequently, the automatic labeling of cancerous regions is achieved by integrating a density‐based clustering algorithm and an edge point extraction algorithm, both based on the discriminated results of the cancerous properties of whole slide images. The experimental results demonstrate the effectiveness of the proposed method, which offers an efficient and accurate solution to the challenging task of cancerous region labeling in digital pathological images.

Publisher

Institution of Engineering and Technology (IET)

Reference38 articles.

1. Ferlay J. Ervik M. Lam F. Colombet M. Mery L. Piñeros M. Bray F.:Global cancer observatory: Cancer today.https://gco.iarc.fr/today(2020). Accessed: 20 September 2020

2. Interpretation on the report of Global Cancer Statistics 2020;Liu Z.C.;J. Multidiscip. Cancer Manag.,2021

3. Histopathology is ripe for automation

4. Overview and prospect of deep learning for image segmentation in digital pathology;Song J.;J. Softw.,2021

5. Survey on the applications of deep learning to histopathology;Jin X.;J. Image Graph.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3