Affiliation:
1. School of Creativity and Art, ShanghaiTech University, Shanghai 201210, China
2. College of Design and Innovation, Tongji University, Shanghai 200092, China
Abstract
At present, artificial intelligence algorithms based on deep learning have achieved good results in image classification, biometric recognition, medical diagnosis, and other fields. However, in practice, many times researchers are unable to obtain a large number of samples due to many limitations or high sampling costs. Therefore, image sorting zero-sampling order research algorithms have become the central engine of intelligent processing and a hot spot for current research. Because of the need for the development of deep learning prediction capability, coupled with the emergence of time and technical-level drawbacks, the advantages of zero-sample and small-sample are gradually emerging, so this paper chooses to fuse the learning methods of both for image recognition research. This paper mainly introduces the current situation of zero-sample and small-sample learning and summarizes the learning of zero-sample and small-sample. And the meaning of zero-sample learning and small-sample learning and the classification of the main learning methods are introduced and compared and outlined, respectively. Finally, the methods of zero-sample and small-sample learning are fused, the design is introduced and analyzed, and the future research directions are prospected according to the current research problems.
Subject
General Engineering,General Mathematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献