Abstract
Abstract
The task of classifying the entanglement properties of a multipartite quantum state poses a remarkable challenge due to the exponentially increasing number of ways in which quantum systems can share quantum correlations. Tackling such challenge requires a combination of sophisticated theoretical and computational techniques. In this paper we combine machine-learning tools and the theory of quantum entanglement to perform entanglement classification for multipartite qubit systems in pure states. We use a parameterisation of quantum systems using artificial neural networks in a restricted Boltzmann machine architecture, known as Neural Network Quantum States, whose entanglement properties can be deduced via a constrained, reinforcement learning procedure. In this way, Separable Neural Network States can be used to build entanglement witnesses for any target state.
Funder
SFI-DfE
European Cooperation in Science and Technology
Leverhulme Trust
H2020 Future and Emerging Technologies
Engineering and Physical Sciences Research Council
The Royal Society Wolfson Research Fellowship
Subject
General Physics and Astronomy
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献